skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, David_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The scattering and absorption of light within biological tissue severely limits the penetration depth of optical imaging techniques. Recently, it has been found that water-soluble, strongly absorbing dye molecules, such as tartrazine, can achievein vivotissue transparency by increasing the refractive index of aqueous components in tissue, as predicted by the Lorentz oscillator model and Kramers–Kronig relations. In this study, we topically applied absorbing dye molecules to the abdominal skin of pigmented and nonpigmented mice to enhance the penetration depth of optical coherence tomography (OCT) and photoacoustic microscopy (PAM). In both types of mice, the penetration depth of OCT was significantly improved using tartrazine and 4-aminoantipyrine. As predicted by the Kramers–Kronig relations and absorption spectra of the dyes, mice treated with 4-aminoantipyrine showed significantly improved penetration depth compared to mice treated with tartrazine for the PAM system with 532 nm excitation. These findings further demonstrate the use of absorbing dye molecules for achieving tissue transparency to enhance the penetration depth of depth-resolved optical imaging modalities in skin, thus accelerating the translation of these technologies in clinical areas, such as dermatology. 
    more » « less
  2. Characterizing the population density of species is a central interest in ecology. Eastern North America is the global hotspot for biodiversity of plethodontid salamanders, an inconspicuous component of terrestrial vertebrate communities, and among the most widespread is the eastern red-backed salamander,Plethodon cinereus. Previous work suggests population densities are high with significant geographic variation, but comparisons among locations are challenged by lack of standardization of methods and failure to accommodate imperfect detection. We present results from a large-scale research network that accounts for detection uncertainty using systematic survey protocols and robust statistical models. We analysed mark–recapture data from 18 study areas across much of the species range. Estimated salamander densities ranged from 1950 to 34 300 salamanders ha−1, with a median of 9965 salamanders ha−1. We compared these results to previous estimates forP. cinereusand other abundant terrestrial vertebrates. We demonstrate that overall the biomass ofP. cinereus, a secondary consumer, is of similar or greater magnitude to widespread primary consumers such as white-tailed deer (Odocoileus virginianus) andPeromyscusmice, and two to three orders of magnitude greater than common secondary consumer species. Our results add empirical evidence thatP. cinereus, and amphibians in general, are an outsized component of terrestrial vertebrate communities in temperate ecosystems. 
    more » « less